If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4y^2+16y+12=0
a = -4; b = 16; c = +12;
Δ = b2-4ac
Δ = 162-4·(-4)·12
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{7}}{2*-4}=\frac{-16-8\sqrt{7}}{-8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{7}}{2*-4}=\frac{-16+8\sqrt{7}}{-8} $
| -2(1-4q)=-7q-5 | | 4(x+2)-3=6x-15 | | 3^4x=15 | | -2(g=3)+1=-7g-4 | | -4x+23=71 | | 57+6=3v | | -7(x-12)=-21 | | 5z=-5(z+1)-z+1 | | h+4=3h | | -1-y=-4+y | | p-254=765 | | 4h=14 | | -5+6c=-4c-8 | | 6-5x=4x+60 | | 24-9d=10+5d | | 9.4x=4.23 | | -1+3s=4-2s | | -b+3=-2b-7 | | 81x2=9 | | 2(f+3)+1=-4f-7 | | x4+45=10 | | -4(x+2)=4(2+2x) | | 8(h+1)+h=4h+5 | | h+8=3h | | (-6x+9)(5x+7)=0 | | 1/2(5x-6)-1/3(9x-15)=1 | | r/5+8=33 | | -5(1-5x)+(-8x-2)=-4x-8 | | 2(4x-3)=5x+9 | | 4/7=p+4/7 | | 5x+5+4x+29=180 | | x+119+70=180 |